Self-sorting of foreign proteins in a bacterial nanocompartment.

نویسندگان

  • W Frederik Rurup
  • Joost Snijder
  • Melissa S T Koay
  • Albert J R Heck
  • Jeroen J L M Cornelissen
چکیده

Nature uses bottom-up approaches for the controlled assembly of highly ordered hierarchical structures with defined functionality, such as organelles, molecular motors, and transmembrane pumps. The field of bionanotechnology draws inspiration from nature by utilizing biomolecular building blocks such as DNA, proteins, and lipids, for the (self-) assembly of new structures for applications in biomedicine, optics, or electronics. Among the toolbox of available building blocks, proteins that form cage-like structures, such as viruses and virus-like particles, have been of particular interest since they form highly symmetrical assemblies and can be readily modified genetically or chemically both on the outer or inner surface. Bacterial encapsulins are a class of nonviral protein cages that self-assemble in vivo into stable icosahedral structures. Using teal fluorescent proteins (TFP) engineered with a specific native C-terminal docking sequence, we report the molecular self-sorting and selective packaging of TFP cargo into bacterial encapsulins during in vivo assembly. Using native mass spectrometry techniques, we show that loading of either monomeric or dimeric TFP cargo occurs with unprecedented high fidelity and exceptional loading accuracy. Such self-assembling systems equipped with self-sorting capabilities would open up exciting opportunities in nanotechnology, for example, as artificial (molecular storage or detoxification) organelles or as artificial cell factories for in situ biocatalysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment.

Rhodococcus jostii RHA1 peroxidase DypB has been recently identified as a bacterial lignin peroxidase. The dypB gene is cotranscribed with a gene encoding an encapsulin protein, which has been shown in Thermotoga maritima to assemble to form a 60-subunit nanocompartment, and DypB contains a C-terminal sequence motif that is thought to target the protein to the encapsulin nanocompartment. R. jos...

متن کامل

The roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk

Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...

متن کامل

Self-assembly and binding of a sorting nexin to sorting endosomes.

The fate of endocytosed membrane proteins and luminal contents is determined by a materials processing system in sorting endosomes. Endosomal retention is a mechanism that traps specific proteins within this compartment, and thereby prevents their recycling. We report that a sorting nexin SNX1, a candidate endosomal retention protein, self-assembles in vitro and in vivo, and has this property i...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Expression and Purification of HCV Core and Core-E1E2 Proteins in Different Bacterial Strains

Background: Hepatitis C virus (HCV) is a main public health problem causing chronic liver infection and subsequently liver cirrhosis and lethal hepatocellular carcinoma (HCC). Vaccination based on HCV capsid proteins has attracted a special interest for prevention of viral infections. The core protein is a basic and evolutionary most conserved protein, which regulates the cellular processes rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 10  شماره 

صفحات  -

تاریخ انتشار 2014